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ABSTRACT 
The paper, investigates the influence of density on the elastic-plastic stresses in a transversely 
isotropic thin rotating disc with edge loading using Seth’s transition theory. The effects of 
angular speed have been discussed for initial yielding and fully- plastic state. A thin rotating disc 
made of isotropic material (Brass) whose density increases rapidly requires higher percentage 
increase in angular speed to become fully- plastic as compared to rotating disc having constant 
density or whose density decreases rapidly and made of transversely isotropic material. Rotating 
disc having variable density and made of isotropic material have a tendency to fracture at bore 
i.e., it is where the largest tensile stress occurs as compared to rotating disc made of transversely 
isotropic material. The tendency of fracture at the bore increases with the increases in edge 
loading. 
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INTRODUCTION 

 
Rotating disc forms an essential part of the 
design of rotating machinery viz. rotors, 
turbines, compressors and flywheel etc. The 
use of rotating disc in machinery and 
structural applications has generated 
considerable interest in many problems in 
the domain of solid mechanics. Solutions for 
thin isotropic discs can be found in most of 
the standard elasticity and plasticity 
textbooks [1-4]. Reddy and Srinath [5] 
investigated the influence of material density 
on the stress and displacement of a rotating 
polar orthotropic circular disc. It has been 
shown that the existence of a density 
gradient in a rotating disc influences the 
stresses and displacements significantly. 
Chang [6] developed closed form solutions 
for a rotating orthotropic circular disc with 
variable density. Guven [7] found the 
elastic–plastic stresses in rotating annular 
disc of variable thickness and variable 
density under the assumption of Tresca’s 
yield condition, its associated flow rule and 
linear strain hardening. To obtain the stress 
distribution, Guven matched the elastic-
plastic stresses at the same radius r = z of the 
disc. Perfect elasticity and ideal plasticity are 
two extreme properties of the material and 
the use of an ad-hoc rule like yield condition 

amounts to divide the two extreme properties 
by a sharp line which is not physically 
possible. When a material passes from one 
state to another qualitatively different state, 
transition takes place. Since this transition is 
non-linear in character and difficult to 
investigate, workers have taken certain ad-
hoc assumptions like yield condition, 
incompressibility condition and a strain law, 
which may or may not valid for the problem. 
Seth’s transition theory [8] does not require 
these assumptions and thus poses and solves 
a more general problem, from which cases 
pertaining to the above assumptions can be 
worked out. This theory utilizes the concept 
of generalized strain measure and asymptotic 
solution at the critical points or turning 
points of the differential equations defining 
the deformed field and has been successfully 
applied to lager number of the problems [9-
14]. 
Here the influence of density on the elastic-
plastic stresses in a transversely isotropic 
thin rotating disc is investigated with edge 
loading using Seth’s transition theory. The 
density of the disc is assumed to vary along 
the radius in the form 

m

o b

r








  ,                                           (1) 

Where, o is the density at r = ‘ b’ and m is 

the density parameter. Results obtained have 
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been discussed numerically and depicted 
graphically. 

 
 
 
Governing Equations 
 
Consider a thin circular disc of variable 
density with a central bore of radius ‘a’ and 
external radius ‘ b’ rotating with angular 
velocity  of gradually increasing 
magnitude about an axis perpendicular to its 
plane and passing through the centre. The 
thickness of the disc is assumed to be 
constant and is taken sufficiently small so 
that the disc is effectively in a state of plane 
stress i.e. the axial stress zzT is zero. 

In cylindrical polar co-ordinates the 
displacements are given by, 
 

  1ru ; 0v and w = d . z                  (2)  

 

where   is a function of 22 yxr   

only and d is a constant. 
The generalized components of strain are,  
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           0 zrzr eee  ,   where n is the 

measure and 
dr

d '  . 

Stress-strain relations for this problem 
becomes, 
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Substituting equations (3) in (4), the non-
zero stress components are,  
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33

2
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C
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The equations of equilibrium are all satisfied 
except 
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Using equation (5) in (6), we get a non-linear 
differential equation in   as, 
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    (7)        
 The transitional points of   in equation (7) 

are  P   - 1 and P  .  

The boundary conditions are  
0rrT   at  r =  ‘a’ and 0TTrr   at r =  ‘ b’.                               

      (8) 
 

Solution through the principal stress 
It has been shown [11, 15-17] that the 
asymptotic solution through the principal 
stress leads from elastic state to plastic state 
at the transition point P  . For 
finding the plastic stress at the transition 
point              P  , We define the 
transition function R2 as,  
R2
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.                 (9) 
Taking the logarithmic differentiation and 

substituting the value of 
d

dP
 from equation 

(7) in equation (9), we get, 
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 Taking the asymptotic value as P   
in equation (10), we get,  

         
r

C
R

dr

d 2
2log


 ,    

where  
A

C
C 66

2
2

  and A = 
33

2
13

11 C

C
C  .      (11)  

where  
A

C
C 66

2
2

  and A = 
33

2
13

11 C

C
C  .   

Integration of equation (11) gives, 

        2
12

CrAR  ,   where  1A  is constant 
of integration.              (12)  
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From equation (9) and equation (11), we 
have, 
       2

1
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Substituting equation (13) in equation (6) 
and integrating, we get,  
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where  2A  is  another integrating constant. 
Using boundary conditions (8) in equation 
(14), we get,  
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    (15)  
Substituting the values of 1A  and 2A from 
equation (15) in equations (13) and (14), we 
get transitional stresses as, 
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for m 3     (17) 
 

Initial Yielding 
It is seen from equation (17) that T  is 

maximum at the internal surface (r = a). 
Therefore, yielding in the disc will take 
place at the internal surface and equation 
(17) becomes, for m 3                
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Angular speed 2
i  for initial yielding (at 

internal surface) is given by, 
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We introduce the following non-dimensional 
components as, 
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Equation (16) and (17) in non-dimensional 
components become, 
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and  m 3. 
For m=3, the stresses (20) and (21) become, 
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Equations (20)-(23) gives the elastic-plastic 
transitional stresses for a thin rotating disc 
having variable density with edge loading. 

 
Fully Plastic State 
From equation (17), the angular velocity 
( if   ) required for the disc to become 

fully plastic  02 C at r = b is given by,  
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For m 3                                      (24) 
Stresses (20) and (21) for fully plastic state 
 02 C become,  
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m 3                          (25) 
For m=3, the Stresses (25) become, 
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For a disc having Constant Density (m=0) 

 
The stresses given by equation (25) for a 
disc having constant density (m=0) are given 
by, 
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Isotropic Case 

 
For isotropic materials, the material 
constants reduce to two only , i.e., 
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In terms of Lame’s constant   and  , these 
can be written as,  
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Elastic-plastic transitional stresses are 
obtained by using equation (28) in equation 
(16) and (17), as,  
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For m=3, Stresses (29) becomes, 
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Fully -Plastic State (Isotropic case) 
From equation (30), the angular velocity 
( if   ) required for the disc to become 

fully plastic  0C at r = b is given by, 
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Stresses for fully plastic case ( 0C ) are 
obtained as,  
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For m 3                 (32) 
For m=3, Stresses  (32) becomes 
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Equations (32) are same as obtained by 
Gupta, Sharma and Pathak [18]. 

 
For a disc having Constant Density 
(isotropic case, m=0) 
The stresses  (33) for a disc 
having constant density are 
obtained as 
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These equations are same as obtained by 
Gupta and Shukla [12]. 

 
Numerical Illustration and Discussion 
(Flat Disc) 
As a numerical example, elastic constants 

ijC  have been given in Table 1 for 

transversely isotropic material [19] (Beryl 
Material) and isotropic material [20] 
(Brass, 33.0 ). The values of angular 

speed required for initial yielding 2
i  and 

fully plastic state 2
f has been given in 

Table 2.  From table 2, it is observed that 
thin rotating disc made of isotropic material 
(Brass) having variable density m=-1 
(density increases radially) with no edge 
load ( 0 =0) yields at the bore at a higher 

angular speed as compare to disc made of 
transversely isotropic material (Beryl), but 
with edge load, the rotating disc made of 
transversely/isotropic material yields at the 
bore at a lesser angular speed and at a much 
lesser angular speed with further increase in 
load. For m=1 (density decreases radially 
from the internal surface of the disc to the 
outer surface), it has been seen from the 
table 2 that rotating disc made of 
transversely isotropic material/ isotropic 
material with edge load yields at the bore at 
a much less angular speed as compare to 
rotating disc having variable density   m=-
1(density increases radially). 
Rotating disc made of isotropic material 
having variable density with no edge load 
( 0 =0) become fully-plastic at a higher 

percentage increase in angular speed from 
initial yielding as compare to rotating disc 

made of transversely isotropic material 
having variable density. With edge load, it 
requires much higher percentage increase in 
angular speed to become fully-plastic. It 
means that a thin rotating disc made of 
isotropic material whose density increases 
radially requires higher percentage increase 
in angular speed to become fully-plastic as 
compare to rotating disc having constant 
density or whose density decreases radially 
and made of transversely isotropic material. 
This percentage in angular speed further 
increases with the increase in edge load 0 . 

In Figures 2, 3, 4; curves have been drawn 
between stresses for a thin rotating disc 
having variable density m=-1,0,1 with edge 
load 0 =0.0, 0.2, 0.3 and radii ratio R=r/b. 

It has been observed that circumferential 
stress is maximum at the bore for rotating 
disc made of isotropic material with no edge 
load ( 0 =0) as compare to rotating disc 

made of transversely isotropic material. The 
values of circumferential stress at the bore 
further increase with edge load. It means that 
rotating disc having variable density and 
made of isotropic material have a tendency 
to fracture at the bore i.e., it is where the 
largest tensile stress occurs as compare to 
rotating disc made of transversely isotropic 
material. Similar results were also shown by 
Rimrott [21] for plastic behaviour of rotating 
isotropic cylinder. The tendency of fracture 
at the bore increases with the increase in 
edge load. It is also observed from Figures 5, 
6 and 7 for the rotating disc having variable 
density and edge load has no effect on the 
circumferential stresses for fully-plastic 
state. 
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Table 1.  Elastic constants ijC  (In units of   1010 N/m2) 

 C44 C11 C12 C13 

Transversely Isotropic Material         (C2 = 
0.69, Beryl) 

0.883 2.746 0.980 0.674 

Isotropic Material   ( 33.0 /C=0.50, Brass) 0.99997 3.0 1.0 1.0 

 
 

Table 2. The values of angular speed required for initial yielding ( 2
i ) and fully plastic state 

( 2
f ) 
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Figure 1. Elastic-plastic Transitional Stresses in a Thin Rotating Disc for Different Edge Load  o  

and variable Density (m=-1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Elastic-plastic Transitional Stresses in a Thin Rotating Disc for Different Edge Load  o  

and variable Density (m=0) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Elastic-plastic Transitional Stresses in a Thin Rotating Disc for Different Edge Load  o  

and variable Density (m=1) 
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Figure  4. Fully-plastic Stresses in a Thin Rotating Disc for Different Edge Load  o  and variable 

Density (m=-1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Fully-plastic Stresses in a Thin Rotating Disc for Different Edge Load  o  and variable 

Density (m=0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Fully-plastic Stresses in a Thin Rotating Disc for Different Edge Load  o  and variable 

Density (m=1) 
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